量子电子学报
    主页 > 期刊导读 >

基于量子卷积神经网络算法的微小零件识别

设计了量子卷积神经网络表示层、隐藏层神经元和输出层神经元模型;采用修正线性激活函数ReLu作为激活函数,并通过训练误差函数优化量子旋转角度和神经连接权值。8种微小零件的仿真试验表明,量子卷积神经网络算法的识别准确率较高,耗时少且识别效果较好。