基于量子卷积神经网络算法的微小零件识别 来源:量子电子学报 【在线投稿】 栏目:期刊导读 时间:2021-07-26 设计了量子卷积神经网络表示层、隐藏层神经元和输出层神经元模型;采用修正线性激活函数ReLu作为激活函数,并通过训练误差函数优化量子旋转角度和神经连接权值。8种微小零件的仿真试验表明,量子卷积神经网络算法的识别准确率较高,耗时少且识别效果较好。
设计了量子卷积神经网络表示层、隐藏层神经元和输出层神经元模型;采用修正线性激活函数ReLu作为激活函数,并通过训练误差函数优化量子旋转角度和神经连接权值。8种微小零件的仿真试验表明,量子卷积神经网络算法的识别准确率较高,耗时少且识别效果较好。