量子电子学报
    主页 > 综合新闻 >

量子模拟,洞悉世界︱大家

唐豪

上海交通大学物理

与天文学院副研究员

金贤敏

上海交通大学物理与天文学院长聘教授、

集成量子信息技术研究中心主任

模拟研究是一个大家并不陌生的研究手段。

例如:侦探在推理案发现场时,往往会采用近似的替代物来尝试复现当时的经过,因为不可能让真实的原人物重演。

又如:科学家研发飞行器时,会在风洞实验室里人工产生并控制气流,用来模拟飞行器的运行,因为如果研究真实飞行器,一旦坠毁则代价太高。

模拟研究使得这些不可能或者太难办的问题变得可能。量子模拟同样具有这样的目标。

20世纪以来,人们认识到世界不能只用经典力学来解释。小到凝聚态物理中的电子运动的特性、微生物体中的能量传输,大到宇宙中的黑体辐射,都不能忽略量子效应。

这些从微观到宏观的自然万物,直接观测往往非常困难,如果采用经典计算机进行模拟分析也并不乐观,例如:计算多体量子系统,需要消耗指数级的资源,模拟50个自旋粒子组成的多体系统需要计算量高达250量级,让现代最先进的超算望而生畏。

1980年初,诺贝尔物理学奖得主理查德 · 费曼(RichardFeynman)提出,是不是可以用一个人工构建的量子系统去模拟自然界中的量子系统呢,这样一来只需要多项式级的计算资源了,使研究原本不可控或者难以实现的量子系统变得可能。

费曼提出这个量子模拟(Quantum Simulation)的思想,并在几年后他类比经典计算机基于逻辑门的数字电路,提出通用量子计算机量子线路的构建。

不过,量子模拟既可以采用这种将量子系统编码到量子线路的数字(Digital)型方式,也可以采用初始提出的直接用一个现成可控的量子系统去类比待模拟的量子系统的类比(Analog)型方式

两种方式都在实验中取得进展,尤其是近五年来,基于冷原子、离子阱、超导、光子等不同量子物理体系的量子模拟都在快速推进。

量子模拟的意义正在加倍凸显。通过不断发展的量子模拟实验技术更准确地模拟了解从微观到宏观的自然万物,使人类对科学和世界的认知得到加深与升华。

量子模拟的三板斧功夫

量子模拟研究各种复杂的量子系统,听起来好像很难。其实再复杂的功夫都有特定的武术招式,量子模拟概括来看,只包括三板斧的主要步骤

首先,需要制备好最初的量子态|ψ(0)〉,比如指定纠缠的粒子对从哪几个特定入射节点注入。

其次,也是最核心的一点,需要制备好量子系统的演化空间并实现量子态的演化。量子系统各节点怎样相互耦合的情形,在物理上我们用哈密顿矩阵来描述。量子模拟便是将待模拟系统的哈密顿矩阵Hsys映射到实验室构建量子系统的哈密顿矩阵Hsim中。量子态在这样空间中的演化符合微分方程的描述,通过幺正操作U=exp{-iHsHsimt}就可获得时间t时的量子态波函数|ψ(t)〉。

第三个主要步骤是对该量子态相关信息进行测量,从而获得待模拟系统的定量或定性的认知。

由此可见,方便地制备量子初态、实现大规模且可精准操控的哈密顿矩阵及幺正演化、方便测量的能力是实验开展量子模拟的重要考虑因素

前面提到数字型的量子模拟,这种通用量子线路实现哈密顿量的映射构建,需要将待模拟的哈密顿矩阵分解到一个个量子逻辑门中,时常还需要采用Jordan-Wigner等各种变换方法将哈密顿量进行转化之后才能对应到量子线路中。通用量子线路上进行幺正操作,也往往需要采用Trotter-Suzuki近似等近似方法才得以实现。此后对通用量子线路的演化结果进行测量,需要对各子项进行换基测量。

完成这一系列操作实现特定量子模拟,往往需要成百上千个量子比特构建数以万计的量子逻辑门,再考虑到这些对于精准量子纠错的极高要求,因此在目前中等噪声量子技术时代下颇具挑战。

而前面提到的类比型量子模拟,不采用通用量子逻辑门,而是专门构建一个量子系统整理,直接与一个特定系统的哈密顿量进行映射、解决一个特定问题,好比针对每种机型专门定制对应的飞机模具进行研究,而不是采用通用的乐高积木组装出所有机型模具。因这种专用性,类比型量子模拟也常称为专用量子计算。