量子电子学报
    主页 > 期刊导读 >

基于改进神经网络算法的蔬菜图像识别

文章提出了改进神经网络算法,建立了径向基函数神经网络模型,包括梯度下降方法求解权重参数,增大邻域半径的均值聚类方法求取隐函数中心值,利用相邻聚类中心获得核宽度,通过量子遗传算法删除冗余权重和神经元;提取了蔬菜图像的特征,并给出了算法流程。仿真试验表明,试验算法对蔬菜图像的形状特征平均识别率为97.56%,纹理特征平均识别率为95.60%,颜色特征平均识别率为93.25%,训练时间平均为5.83s、识别时间平均为2.18s,优于其他算法。